If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-27t+7t^2-40=0
a = 7; b = -27; c = -40;
Δ = b2-4ac
Δ = -272-4·7·(-40)
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-43}{2*7}=\frac{-16}{14} =-1+1/7 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+43}{2*7}=\frac{70}{14} =5 $
| 2v+3=-1 | | 8x-40-2x=45-2x | | 1+12p=3(3+4p | | w/4-11=20 | | x(2)+3x+2=0 | | 0.004x=16 | | P(t)=1.8^5 | | 2(2s-4)+15=5(s-1)-(4s+1) | | 4x-18=2x-12 | | H(t)=175(1.028)^5 | | (5-2i)=(3+3i) | | 1/5w-3=-75 | | 2(25-4)+15=5(5-10-(4s+1) | | 19=w/3-11 | | F(t)=1500(1.074)^5 | | W=11/(4(l-7)) | | 6(2y+2)-6=-1 | | 30w+100=10w+500 | | 3x=6-15 | | 37x+18=6(6x+5) | | w=11/(4w-7) | | 2a-20.3=a+1.7 | | 3m^2+m-1=0 | | 3/5y+10=4 | | 8x-16=-8 | | 3(a-6)=-5a-(7-3a) | | 15x+(3x-4)=180 | | x(6x-1)=25 | | 2x+11+5x-12=180 | | 2.1x-10.5=31.5-6.7x | | 2+2/3=2/5x+2 | | 398.40=47(x+2.45) |